University of Udine & University of Pisa

A new criterion for M, N-adhesivity with an application to hierarchical graphs

Davide Castelnovo (davide.castelnovo@uniud.it) Fabio Gadducci (fabio.gadducci@unipi.it) Marino Miculan (marino.miculan@uniud.it)

FOSSACS 2022 — Munich, April 6, 2022

Adhesive categories were introduced in Lack and Sobociński 2005 as a general and abstract framework for the double pushout approach to rewriting theory.

Adhesive categories were introduced in Lack and Sobociński 2005 as a general and abstract framework for the double pushout approach to rewriting theory.

Roughly speaking an adhesive category is a category in which pushouts along monos interact with pullbacks in the same way as they do in a topos (Lack and Sobocinski 2006; Garner and Lack 2012; Johnstone, Lack, and Sobocinski 2007).

Adhesive categories were introduced in Lack and Sobociński 2005 as a general and abstract framework for the double pushout approach to rewriting theory.

Roughly speaking an adhesive category is a category in which pushouts along monos interact with pullbacks in the same way as they do in a topos (Lack and Sobocinski 2006; Garner and Lack 2012; Johnstone, Lack, and Sobocinski 2007).

In this framework one can prove in an abstract way results such the Local Church-Rosser Theorem or the Concurrency Theorem (see Lack and Sobociński 2005).

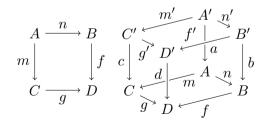
Adhesivity is a property of pushout squares having a mono as one of the two given sides, so we can generalize this notion with two further steps:

- (\mathcal{M} -adhesivity see Azzi, Corradini, and Ribeiro 2019) ask the adhesivity property for squares in which one of the given sides comes from a suitable class \mathcal{M} of monos;
- $(\mathcal{M}, \mathcal{N}\text{-adhesivity see Habel and Plump 2012})$ ask the adhesivity property for squares in which one of the given sides comes from a suitable class \mathcal{M} of monos and the other comes from another suitable class \mathcal{N} .

The formal meaning of "pushouts interact with pullbacks as in a topos" is captured by the notion of *Van Kampen square*.

The formal meaning of "pushouts interact with pullbacks as in a topos" is captured by the notion of *Van Kampen square*.

A pushout square as the one on the left below in a category is *Van Kampen* if in any cube constructed upon it, having pullbacks as back faces, the top face is a pushout if and only if the front faces are pullbacks.



Now, take a category \mathbf{A} , and fix a class of monos \mathcal{M} and a class of arrows \mathcal{N} . Suppose also that they interact "nicely" (i.e. they enjoy some composition and decomposition property).

Now, take a category \mathbf{A} , and fix a class of monos \mathcal{M} and a class of arrows \mathcal{N} . Suppose also that they interact "nicely" (i.e. they enjoy some composition and decomposition property).

Definition (Habel and Plump 2012)

Given \mathbf{A} , \mathcal{M} and \mathcal{N} as above, \mathbf{A} is \mathcal{M} , \mathcal{N} -adhesive if

- every cospan $C \xrightarrow{g} D \xleftarrow{m} B$ with $m \in \mathcal{M}$ can be completed to a pullback (\mathcal{M} -pullbacks);
- 2 every span $C \xleftarrow{m} A \xrightarrow{n} B$ with $m \in \mathcal{M}$ and $n \in \mathcal{N}$ can be completed to a pushout; (\mathcal{M}, \mathcal{N} -pushouts);
- **8** \mathcal{M}, \mathcal{N} -pushouts are Van Kampen squares.

Now, take a category \mathbf{A} , and fix a class of monos \mathcal{M} and a class of arrows \mathcal{N} . Suppose also that they interact "nicely" (i.e. they enjoy some composition and decomposition property).

Definition (Habel and Plump 2012)

Given \mathbf{A} , \mathcal{M} and \mathcal{N} as above, \mathbf{A} is \mathcal{M} , \mathcal{N} -adhesive if

- every cospan $C \xrightarrow{g} D \xleftarrow{m} B$ with $m \in \mathcal{M}$ can be completed to a pullback (\mathcal{M} -pullbacks);
- 2 every span $C \xleftarrow{m} A \xrightarrow{n} B$ with $m \in \mathcal{M}$ and $n \in \mathcal{N}$ can be completed to a pushout; (\mathcal{M}, \mathcal{N} -pushouts);
- $\circledast \ \mathcal{M}, \mathcal{N}\text{-pushouts}$ are Van Kampen squares.

Taking \mathcal{M} to be the class of all (regular) monos and \mathcal{N} to be the class of all maps we get back the usual notion of (quasi)adhesivity.

5/14 Davide Castelnovo

A new criterion for \mathcal{M}, \mathcal{N} -adhesivity

Definition

Let $I : \mathbf{I} \to \mathbf{C}$ be a diagram and J a set. We say that a family $F = \{F_j\}_{j \in J}$ of functors $F_j : \mathbf{C} \to \mathbf{D}_j$

• *jointly preserves (co)limits* of I if given a (co)limiting (co)cone $(L, l_i)_{i \in \mathbf{I}}$ for I, every $(F_j(L), F_j(l_i))_{i \in \mathbf{I}}$ is (co)limiting for $F_j \circ I$;

Definition

Let $I : \mathbf{I} \to \mathbf{C}$ be a diagram and J a set. We say that a family $F = \{F_j\}_{j \in J}$ of functors $F_j : \mathbf{C} \to \mathbf{D}_j$

• jointly reflects (co)limits of I if a (co)cone $(L, l_i)_{i \in \mathbf{I}}$ is (co)limiting for I whenever $(F_j(L), F_j(l_i))_{i \in \mathbf{I}}$ is (co)limiting for $F_j \circ I$ for every $j \in J$;

Definition

Let $I : \mathbf{I} \to \mathbf{C}$ be a diagram and J a set. We say that a family $F = \{F_j\}_{j \in J}$ of functors $F_j : \mathbf{C} \to \mathbf{D}_j$

• jointly lifts (co)limits of I if given a (co)limiting (co)cone $(L_j, l_{j,i})_{i \in \mathbf{I}}$ for every $F_j \circ I$, there exists a (co)limiting (co)cone $(L, l_i)_{i \in \mathbf{I}}$ for I such that $(F_j(L), F_j(l_i))_{i \in \mathbf{I}} = (L_j, l_{j,i})_{i \in \mathbf{I}}$ for every $j \in J$.

Definition

Let $I : \mathbf{I} \to \mathbf{C}$ be a diagram and J a set. We say that a family $F = \{F_j\}_{j \in J}$ of functors $F_j : \mathbf{C} \to \mathbf{D}_j$

• *jointly creates (co)limits* of I if I has a (co)limit and F jointly preserves and reflects (co)limits along it.

Theorem

1) If every F_j preserves pullbacks, F jointly preserves \mathcal{M}, \mathcal{N} -pushouts, and jointly reflects pushout squares as aside with $m, n \in \mathcal{M}$ and $f \in \mathcal{N}, \mathcal{M}$ -pullbacks and \mathcal{N} -pullbacks then \mathcal{M}, \mathcal{N} -pushouts are Van Kampen squares.

$$F_{j}(A) \xrightarrow{F_{j}(f)} F_{j}(B)$$

$$F_{j}(m) \downarrow \qquad \qquad \downarrow F_{j}(n)$$

$$F_{j}(C) \xrightarrow{F_{j}(g)} F_{j}(D)$$

Theorem

2) If F satisfies the assumptions of point 1) and jointly creates both \mathcal{M} -pullbacks and \mathcal{N} -pullbacks, then \mathbf{A} is \mathcal{M}, \mathcal{N} -adhesive.

Theorem

3) If F jointly creates all pushouts and all pullbacks, then **A** is $\mathcal{M}_F, \mathcal{N}_F$ -adhesive, where

$$\mathcal{M}_F := \{ m \in \mathbf{A} \mid F_j(m) \in \mathcal{M}_j \text{ for every } j \in J \}$$
$$\mathcal{N}_F := \{ n \in \mathbf{A} \mid F_j(n) \in \mathcal{N}_j \text{ for every } j \in J \}$$

A first application of our criterion is given by comma categories. Recall that the *comma category* $L \downarrow R$ of $L : \mathbf{A} \to \mathbf{C}, R : \mathbf{B} \to \mathbf{C}$ has arrows $f : L(A) \to R(B)$ as objects and squares as the one aside as morphisms.

$$L(A) \xrightarrow{L(h)} L(A')$$

$$f \downarrow \qquad \qquad \downarrow g$$

$$R(C) \xrightarrow{R(k)} R(C')$$

A first application of our criterion is given by comma categories. Recall that the *comma category* $L \downarrow R$ of $L : \mathbf{A} \to \mathbf{C}, R : \mathbf{B} \to \mathbf{C}$ has arrows $f : L(A) \to R(B)$ as objects and squares as the one aside as morphisms.

Theorem

Let $I : \mathbf{I} \to L \downarrow R$ be a diagram such that L preserves the colimit (if it exists) of $U_L \circ I$. Then the two forgetful functors $U_L : L \downarrow R \to \mathbf{C}$, $U_R : L \downarrow R \to \mathbf{C}$ jointly creates colimits of I.

 $L(A) \xrightarrow{L(h)} L(A')$

 $R(C) \xrightarrow[R(k)]{} R(C')$

 $\mid g$

f

A first application of our criterion is given by comma categories. Recall that the *comma category* $L \downarrow R$ of $L : \mathbf{A} \to \mathbf{C}, R : \mathbf{B} \to \mathbf{C}$ has arrows $f : L(A) \to R(B)$ as objects and squares as the one aside as morphisms.

Corollary

Let **A** and **B** be respectively \mathcal{M}, \mathcal{N} -adhesive and $\mathcal{M}', \mathcal{N}'$ -adhesive categories, $L : \mathbf{A} \to \mathbf{C}$ a functor that preserves \mathcal{M}, \mathcal{N} -pushouts, and $R : \mathbf{B} \to \mathbf{C}$ a pullback preserving one. Then $L \downarrow R$ is $\mathcal{M} \downarrow \mathcal{M}', \mathcal{N} \downarrow \mathcal{N}'$ -adhesive, where

$$\mathcal{M} \downarrow \mathcal{M}' := \{ (h, k) \in L \downarrow R \mid h \in \mathcal{M}, k \in \mathcal{M}' \}$$
$$\mathcal{N} \downarrow \mathcal{N} := \{ (h, k) \in L \downarrow R \mid h \in \mathcal{N}, k \in \mathcal{N}' \}.$$

 $L(A) \xrightarrow{L(h)} L(A')$

 $f \downarrow \qquad \qquad \downarrow g$

 $R(C) \xrightarrow[R(k)]{} R(C')$

Another important example is that of *hierarchical graphs* (Palacz 2004; Padberg 2017). Roughly speaking hierarchical graphs are graphs in which the set of edges comes equipped with some structure. Usually with also want a graph to display a *interface*, i. e. a given subset of its nodes.

Another important example is that of *hierarchical graphs* (Palacz 2004; Padberg 2017). Roughly speaking hierarchical graphs are graphs in which the set of edges comes equipped with some structure. Usually with also want a graph to display a *interface*, i. e. a given subset of its nodes.

Formally, take the forgetful functor $L : \mathbf{S} \to \mathbf{Set}$ from some category of *structured* sets and the functor $R : \mathbf{Set}^2 \to \mathbf{Set}$ which sends $f : X \to Y$ to $Y \times Y$. Then the category of graphs in which the set of edges is an object of \mathbf{S} is simply [L, R].

From our criterion it follows that, if L is well-behaved with respect to pushouts, the category of hierarchical graphs inherits the adhesivity properties of **S**.

From our criterion it follows that, if L is well-behaved with respect to pushouts, the category of hierarchical graphs inherits the adhesivity properties of **S**.

We can replace graphs with *hyper*graph using the functor $\mathbf{Set}^2 \to \mathbf{Set}$ which sends $f: X \to Y$ to the free monoid on Y (this relies on the fact that the free monoid monad is cartesian and thus preserves pullbacks, see Carboni and Johnstone 1995).

We can give two examples of this construction.

We can give two examples of this construction.

● Take **S** to be the category of trees. This is a presheaf topos and, as such, adhesive. Thus the category of hierarchical (hyper)graphs is adhesive too.

We can give two examples of this construction.

- Take S to be the category of trees. This is a presheaf topos and, as such, adhesive. Thus the category of hierarchical (hyper)graphs is adhesive too.
- **2** We can take as **S** the category od directed acyclic graphs. This category has the \mathcal{M} , \mathcal{N} -adhesivity property where
 - \mathcal{M} is the class of *downward closed morphisms*: if a node is in the image of such a morphism then all its predecessors are in the image too;
 - \mathcal{N} is the class of monos.

Our criterion now yields immediately an adhesivity property for this kind of hierarchical (hyper)graphs.

Term graphs

Our last example is given by term graphs (Corradini and Gadducci 2005).

Our last example is given by term graphs (Corradini and Gadducci 2005).

Definition

Let $\Sigma = (O, \operatorname{ar})$ be an algebraic signature, term graph over Σ is given by a set V is a set, and two partial functions $l: V \rightharpoonup O$, $s: V \rightharpoonup V^*$

- $\operatorname{dom}(l) = \operatorname{dom}(s);$
- for each $v \in \text{dom}(l)$, $\operatorname{ar}(l(v)) = \operatorname{length}(s(a))$, where $\operatorname{length} : V^* \to \mathbb{N}$ associates to each word its length.

A morphism $(V, l, s) \to (W, t, r)$ is a function $f : V \to W$ such that, for every $v \in \text{dom}(l)$.

$$t(f(v)) = l(v) \qquad r(f(v)) = f^{\star}(s(v))$$

Our last example is given by $term \ graphs$ (Corradini and Gadducci 2005).

We can apply our criterion to the forgetful functor $\mathbf{TG}_{\Sigma} \to \mathbf{Set}$, allowing us to recover the following theorem.

Theorem

The category \mathbf{TG}_{Σ} of term graphs is quasiadhesive.

Our last example is given by $term \ graphs$ (Corradini and Gadducci 2005).

We can apply our criterion to the forgetful functor $\mathbf{TG}_{\Sigma} \to \mathbf{Set}$, allowing us to recover the following theorem.

Theorem

The category \mathbf{TG}_{Σ} of term graphs is quasiadhesive.

This result was already known, but our framework allows us to dissect the traditional brute-force proof (see Corradini and Gadducci 2005) and to see how, instead, it relies on general and abstract facts.

We have introduced a new criterion for \mathcal{M} , \mathcal{N} -adhesivity, abstracting from many *ad hoc* proofs found in literature. This criterion allows us to prove in a uniform and systematic way some previous results about the adhesivity of categories built by products, exponents, and comma construction, such as hierarchical (hyper)graphs and term graphs.

We have introduced a new criterion for \mathcal{M} , \mathcal{N} -adhesivity, abstracting from many *ad hoc* proofs found in literature. This criterion allows us to prove in a uniform and systematic way some previous results about the adhesivity of categories built by products, exponents, and comma construction, such as hierarchical (hyper)graphs and term graphs. Further work:

We have introduced a new criterion for \mathcal{M} , \mathcal{N} -adhesivity, abstracting from many *ad hoc* proofs found in literature. This criterion allows us to prove in a uniform and systematic way some previous results about the adhesivity of categories built by products, exponents, and comma construction, such as hierarchical (hyper)graphs and term graphs.

Further work:

• we plan to analyse other categories of graph-like objects such as *(directed bi-graphs)* (Grohmann and Miculan 2007);

We have introduced a new criterion for \mathcal{M} , \mathcal{N} -adhesivity, abstracting from many *ad hoc* proofs found in literature. This criterion allows us to prove in a uniform and systematic way some previous results about the adhesivity of categories built by products, exponents, and comma construction, such as hierarchical (hyper)graphs and term graphs.

Further work:

- we plan to analyse other categories of graph-like objects such as *(directed bi-graphs)* (Grohmann and Miculan 2007);
- verify if the \mathcal{M}, \mathcal{N} -adhesivity that we obtain from our criterion is suited for modelling specific rewriting systems: for instance \mathbf{TG}_{Σ} is quasiadhesive but this does not suffice in most applications, because the rules are often spans of monomorphisms, and not of regular monos.

Thank you for your attention!

A new criterion for $\mathcal{M}, \mathcal{N}\text{-}adhesivity$

- Guilherme Grochau Azzi, Andrea Corradini, and Leila Ribeiro (2019). "On the essence and initiality of conflicts in *M*-adhesive transformation systems". In: *Journal of Logical* and Algebraic Methods in Programming 109, p. 100482.
- Aurelio Carboni and Peter Johnstone (1995). "Connected limits, familial representability and Artin glueing". In: *Mathematical Structures in Computer Science* 5.4, pp. 441–459.
- Andrea Corradini and Fabio Gadducci (2005). "On term graphs as an adhesive category". In: *TERMGRAPH 2004.* Ed. by Maribel Fernández. Vol. 127(5). ENTCS. Elsevier, pp. 43–56.
- Richard Garner and Stephen Lack (2012). "On the axioms for adhesive and quasiadhesive categories". In: Theory and Applications of Categories 27.3, pp. 27–46.
- Davide Grohmann and Marino Miculan (2007). "Directed Bigraphs". In: MFPS 2007.

Ed. by Marcelo Fiore. Vol. 173. ENTCS. Elsevier, pp. 121–137.

Annegret Habel and Detlef Plump (2012). "*M*, *N*-Adhesive Transformation Systems". In: *ICGT 2012.* Ed. by Hartmut Ehrig et al. Vol. 7562. LNCS. Springer, pp. 218–233.

- Peter T. Johnstone, Stephen Lack, and Pawel Sobocinski (2007). "Quasitoposes, Quasiadhesive Categories and Artin Glueing". In: CALCO 2007. Ed. by Till Mossakowski, Ugo Montanari, and Magne Haveraaen. Vol. 4624. LNCS. Springer, pp. 312–326.
- Stephen Lack and Paweł Sobociński (2005). "Adhesive and quasiadhesive categories". In: RAIRO-Theoretical Informatics and Applications 39.3, pp. 511–545.
- Stephen Lack and Pawel Sobocinski (2006). "Toposes Are Adhesive". In: *ICGT 2006*.
 - Ed. by Andrea Corradini et al. Vol. 4178. LNCS. Springer, pp. 184–198.
- Julia Padberg (2017). "Hierarchical Graph Transformation Revisited Transformations of Coalgebraic Graphs". In: ICGT 2017. Ed. by Juan de Lara and Detlef Plump. Vol. 10373. LNCS. Springer, pp. 20–35.
- Wojciech Palacz (2004). "Algebraic hierarchical graph transformation". In: Journal of Computer and System Sciences 68.3, pp. 497–520.