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Adhesive categories were introduced in Lack and Sobociński 2005 as a general and
abstract framework for the double pushout approach to rewriting theory.

Roughly speaking an adhesive category is a category in which pushouts along monos
interact with pullbacks in the same way as they do in a topos (Lack and Sobocinski
2006; Garner and Lack 2012; Johnstone, Lack, and Sobocinski 2007).
In this framework one can prove in an abstract way results such the Local Church-
Rosser Theorem or the Concurrency Theorem (see Lack and Sobociński 2005).
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Adhesivity is a property of pushout squares having a mono as one of the two given
sides, so we can generalize this notion with two further steps:
• (M-adhesivity see Azzi, Corradini, and Ribeiro 2019) ask the adhesivity prop-

erty for squares in which one of the given sides comes from a suitable class M
of monos;
• (M, N -adhesivity see Habel and Plump 2012) ask the adhesivity property for

squares in which one of the given sides comes from a suitable classM of monos
and the other comes from another suitable class N .

M,N -adhesivity
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The formal meaning of “pushouts interact with pullbacks as in a topos” is captured
by the notion of Van Kampen square.

A pushout square as the one on the left below in a category is Van Kampen if in any
cube constructed upon it, having pullbacks as back faces, the top face is a pushout
if and only if the front faces are pullbacks.
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Now, take a category A, and fix a class of monos M and a class of arrows N .
Suppose also that they interact “nicely” (i.e. they enjoy some composition and
decomposition property).

Definition (Habel and Plump 2012)
Given A, M and N as above, A is M, N -adhesive if

1 every cospan C
g−→ D

m←− B with m ∈M can be completed to a pullback (
M-pullbacks);

2 every span C
m←− A

n−→ B with m ∈M and n ∈ N can be completed to a
pushout; ( M,N -pushouts);

3 M,N -pushouts are Van Kampen squares.

Taking M to be the class of all (regular) monos and N to be the class of all maps
we get back the usual notion of (quasi)adhesivity.

M,N -adhesivity: definition
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In many cases the proof of M,N -adhesivity of a category A is given shifting the
calculus of pullbacks and pushouts to another B whose adhesivity properties are
known. Our criterion is a formalization of this procedure.

A simple criterion
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In a lot of cases the proof of M,N -adhesivity of a category A is given shifting the
calculus of pullbacks and pushouts to another B whose adhesivity properties are
known. Our criterion is a formalization of this procedure. We start with a technical
definition.

Definition
Let I : I → C be a diagram and J a set. We say that a family F = {Fj}j∈J of
functors Fj : C→ Dj

• jointly preserves (co)limits of I if given a (co)limiting (co)cone (L, li)i∈I for I,
every (Fj(L), Fj(li))i∈I is (co)limiting for Fj ◦ I;
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In a lot of cases the proof of M,N -adhesivity of a category A is given shifting the
calculus of pullbacks and pushouts to another B whose adhesivity properties are
known. Our criterion is a formalization of this procedure. We start with a technical
definition.

Definition
Let I : I → C be a diagram and J a set. We say that a family F = {Fj}j∈J of
functors Fj : C→ Dj

• jointly lifts (co)limits of I if given a (co)limiting (co)cone (Lj , lj,i)i∈I for
every Fj ◦ I, there exists a (co)limiting (co)cone (L, li)i∈I for I such that
(Fj(L), Fj(li))i∈I = (Lj , lj,i)i∈I for every j ∈ J .
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In a lot of cases the proof of M,N -adhesivity of a category A is given shifting the
calculus of pullbacks and pushouts to another B whose adhesivity properties are
known. Our criterion is a formalization of this procedure. We start with a technical
definition.

Definition
Let I : I → C be a diagram and J a set. We say that a family F = {Fj}j∈J of
functors Fj : C→ Dj

• jointly creates (co)limits of I if I has a (co)limit and F jointly preserves and
reflects (co)limits along it.
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We are now ready to state our criterion. We will fix a category A, classesM and N
and a non empty family of functors Fj : A → Bj such that Bj is Mj ,Nj-adhesive
and Fj(M) ⊂Mj , Fj(N ) ⊂ Nj for every j ∈ J . We can prove the following:

A simple criterion
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and a non empty family of functors Fj : A → Bj such that Bj is Mj ,Nj-adhesive
and Fj(M) ⊂Mj , Fj(N ) ⊂ Nj for every j ∈ J . We can prove the following:

Theorem
1) If every Fj preserves pullbacks, F jointly preserves
M,N -pushouts, and jointly reflects pushout squares as
aside with m, n ∈ M and f ∈ N , M-pullbacks and N -
pullbacks thenM,N -pushouts are Van Kampen squares.

Fj(A) Fj(B)

Fj(D)Fj(C)

Fj(f)

Fj(g)
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A simple criterion

7/14 Davide Castelnovo A new criterion for M, N -adhesivity



We are now ready to state our criterion. We will fix a category A, classesM and N
and a non empty family of functors Fj : A → Bj such that Bj is Mj ,Nj-adhesive
and Fj(M) ⊂Mj , Fj(N ) ⊂ Nj for every j ∈ J . We can prove the following:

Theorem
2) If F satisfies the assumptions of point 1) and jointly creates both M-pullbacks
and N -pullbacks, then A is M,N -adhesive.
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We are now ready to state our criterion. We will fix a category A, classesM and N
and a non empty family of functors Fj : A → Bj such that Bj is Mj ,Nj-adhesive
and Fj(M) ⊂Mj , Fj(N ) ⊂ Nj for every j ∈ J . We can prove the following:

Theorem
3) If F jointly creates all pushouts and all pullbacks, then A is MF ,NF -adhesive,
where

MF := {m ∈ A | Fj(m) ∈Mj for every j ∈ J}
NF := {n ∈ A | Fj(n) ∈ Nj for every j ∈ J}
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A first application of our criterion is given by comma categories.
Recall that the comma category L↓R of L : A→ C, R : B→ C
has arrows f : L(A)→ R(B) as objects and squares as the one
aside as morphisms.

L(A) L(A′)

R(C ′)R(C)

L(h)

R(k)

f g

Application: comma categories
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has arrows f : L(A)→ R(B) as objects and squares as the one
aside as morphisms.

L(A) L(A′)

R(C ′)R(C)

L(h)

R(k)

f g

Theorem
Let I : I → L↓R be a diagram such that L preserves the colimit (if it exists) of
UL ◦ I. Then the two forgetful functors UL : L↓R → C, UR : L↓R → C jointly
creates colimits of I.

Application: comma categories
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A first application of our criterion is given by comma categories.
Recall that the comma category L↓R of L : A→ C, R : B→ C
has arrows f : L(A)→ R(B) as objects and squares as the one
aside as morphisms.

L(A) L(A′)

R(C ′)R(C)

L(h)

R(k)

f g

Corollary
Let A and B be respectively M,N -adhesive and M′,N ′-adhesive categories, L :
A → C a functor that preserves M,N -pushouts, and R : B → C a pullback
preserving one. Then L↓R is M↓M′,N ↓N ′-adhesive, where

M↓M′ := {(h, k) ∈ L↓R | h ∈M, k ∈M′}
N ↓N := {(h, k) ∈ L↓R | h ∈ N , k ∈ N ′}.
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Another important example is that of hierarchical graphs (Palacz 2004; Padberg
2017). Roughly speaking hierarchical graphs are graphs in which the set of edges
comes equipped with some structure. Usually with also want a graph to display a
interface, i. e. a given subset of its nodes.

Formally, take the forgetful functor L : S → Set from some category of structured
sets and the functor R : Set2 → Set which sends f : X → Y to Y × Y . Then the
category of graphs in which the set of edges is an object of S is simply [L, R].

Hierarchical graphs
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From our criterion it follows that, if L is well-behaved with respect to pushouts, the
category of hierarchical graphs inherits the adhesivity properties of S.

We can replace graphs with hypergraph using thee functor Set2 → Set which sends
f : X → Y to the free monoid on Y (this relies on the fact that the free monoid
monad is cartesian and thus preserves pullbacks, see Carboni and Johnstone 1995).

Hierarchical graphs
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We can give two examples of this construction.

1 Take S to be the category of trees. This is a presheaf topos and, as such,
adhesive. Thus the category of hierarchical (hyper)graphs is adhesive too.

2 We can take as S the category od directed acyclic graphs. This category has
the M, N -adhesivity property where
• M is the class of downward closed morphisms: if a node is in the image of such a

morphism then all its predecessors are in the image too;
• N is the class of monos.

Our criterion now yields immediately an adhesivity property for this kind of
hierarchical (hyper)graphs.

Hierarchical graphs
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Our last example is given by term graphs (Corradini and Gadducci 2005).

Term graphs
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Our last example is given by term graphs (Corradini and Gadducci 2005).

Definition
Let Σ = (O, ar) be an algebraic signature, term graph over Σ is given by a set V is
a set, and two partial functions l : V ⇀ O, s : V ⇀ V ⋆

• dom(l) = dom(s);
• for each v ∈ dom(l), ar(l(v)) = length(s(a)), where length : V ⋆ → N associates

to each word its length.
A morphism (V, l, s) → (W, t, r) is a function f : V → W such that, for every
v ∈ dom(l).

t(f(v)) = l(v) r(f(v)) = f⋆(s(v))

Term graphs
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Our last example is given by term graphs (Corradini and Gadducci 2005).

We can apply our criterion to the forgetful functor TGΣ → Set, allowing us to
recover the following theorem.

Theorem
The category TGΣ of term graphs is quasiadhesive.

Term graphs
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Our last example is given by term graphs (Corradini and Gadducci 2005).

We can apply our criterion to the forgetful functor TGΣ → Set, allowing us to
recover the following theorem.

Theorem
The category TGΣ of term graphs is quasiadhesive.

This result was already known, but our framework allows us to dissect the traditional
brute-force proof (see Corradini and Gadducci 2005) and to see how, instead, it relies
on general and abstract facts.

Term graphs
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We have introduced a new criterion forM, N -adhesivity, abstracting from many ad
hoc proofs found in literature. This criterion allows us to prove in a uniform and
systematic way some previous results about the adhesivity of categories built by
products, exponents, and comma construction, such as hierarchical (hyper)graphs
and term graphs.

Further work:
• we plan to analyse other categories of graph-like objects such as (directed bi-

graphs) (Grohmann and Miculan 2007);
• verify if the M,N -adhesivity that we obtain from our criterion is suited for

modelling specific rewriting systems: for instance TGΣ is quasiadhesive but
this does not suffice in most applications, because the rules are often spans of
monomorphisms, and not of regular monos.

Conclusions and further work

13/14 Davide Castelnovo A new criterion for M, N -adhesivity



We have introduced a new criterion forM, N -adhesivity, abstracting from many ad
hoc proofs found in literature. This criterion allows us to prove in a uniform and
systematic way some previous results about the adhesivity of categories built by
products, exponents, and comma construction, such as hierarchical (hyper)graphs
and term graphs.
Further work:

• we plan to analyse other categories of graph-like objects such as (directed bi-
graphs) (Grohmann and Miculan 2007);
• verify if the M,N -adhesivity that we obtain from our criterion is suited for

modelling specific rewriting systems: for instance TGΣ is quasiadhesive but
this does not suffice in most applications, because the rules are often spans of
monomorphisms, and not of regular monos.

Conclusions and further work

13/14 Davide Castelnovo A new criterion for M, N -adhesivity



We have introduced a new criterion forM, N -adhesivity, abstracting from many ad
hoc proofs found in literature. This criterion allows us to prove in a uniform and
systematic way some previous results about the adhesivity of categories built by
products, exponents, and comma construction, such as hierarchical (hyper)graphs
and term graphs.
Further work:
• we plan to analyse other categories of graph-like objects such as (directed bi-

graphs) (Grohmann and Miculan 2007);

• verify if the M,N -adhesivity that we obtain from our criterion is suited for
modelling specific rewriting systems: for instance TGΣ is quasiadhesive but
this does not suffice in most applications, because the rules are often spans of
monomorphisms, and not of regular monos.

Conclusions and further work

13/14 Davide Castelnovo A new criterion for M, N -adhesivity



We have introduced a new criterion forM, N -adhesivity, abstracting from many ad
hoc proofs found in literature. This criterion allows us to prove in a uniform and
systematic way some previous results about the adhesivity of categories built by
products, exponents, and comma construction, such as hierarchical (hyper)graphs
and term graphs.
Further work:
• we plan to analyse other categories of graph-like objects such as (directed bi-

graphs) (Grohmann and Miculan 2007);
• verify if the M,N -adhesivity that we obtain from our criterion is suited for

modelling specific rewriting systems: for instance TGΣ is quasiadhesive but
this does not suffice in most applications, because the rules are often spans of
monomorphisms, and not of regular monos.

Conclusions and further work

13/14 Davide Castelnovo A new criterion for M, N -adhesivity



Thank you for your attention!
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